在許多個城市中,售貨員必須節省他的時間走訪美一個城市去銷售他的物品,最後再回到原本的城市中,但城市與城市之災來回的時間不一樣,這可能是因為城市與城市之間的高速公路常常塞車,亦或是可能碰到一些單行道....等,所以依照時間的不確定性,找出一個最有效率的走法,這類問題稱之為售貨員旅行問題。
利用回溯,可先求出一段路徑作為比較基準,比之大就不再走下去,比之小就已它作為基準繼續再找更小的路徑,一直找到最後,最佳路徑即會出現,建構 TravelingSalesperson 類別傳入 W 陣列,W[i][j] 代表從城市 i 到城市 j 所花的時間,最後 bestPath 紀錄最佳路徑的走法,minlength 則是最佳路徑的時間長度,以下為 C# 範例程式碼:
class TravelingSalesperson { int n; int[,] W; public int[] recordPath, bestPath; public int length, minlength; public TravelingSalesperson(int[,] W) { this.W = W; length = 0; minlength = int.MaxValue; n = W.GetLength(0); recordPath = new int[n]; bestPath = new int[n]; for (int i = 0; i < n; i++) { recordPath[i] = i; bestPath[i] = i; } } public void teavel(int i) { if (i > n - 1) { length += W[recordPath[n - 1], 0]; if (length < minlength) { minlength = length; for (int k = 0; k < n; k++) bestPath[k] = recordPath[k]; } length -= W[recordPath[n - 1], 0]; return; } for (int j = i; j < n; j++) { swapRecordPath(j, i); length += W[recordPath[i - 1], recordPath[i]]; if (length < minlength) teavel(i + 1); length -= W[recordPath[i - 1], recordPath[i]]; swapRecordPath(j, i); } } public void swapRecordPath(int i, int j) { int temp = recordPath[i]; recordPath[i] = recordPath[j]; recordPath[j] = temp; } }而分枝界限修剪法之最佳優先搜尋的方法,則提供 C# 原始碼,有興趣可以買書來參考,傳入 W 陣列,W[i][j] 代表從城市 i 到城市 j 所花的時間,minlength 則是傳入一個大於任何最佳解的數即可:
struct node { public int level, bound; public string path; public bool[] isUse; } class Travel { int[,] W; public node init; public int minlength; public string opttour; int num; public Travel(int[,] W, int minlength) { this.W = W; num = W.GetLength(0); init = new node(); init.isUse = new bool[num]; init.level = 0; init.path = "0"; init.isUse[0] = true; init.bound = bound(init); this.minlength = minlength; } public void solve(node n) { List<node> PQ = new List<node>(); node v = new node(); if (n.bound < minlength) { if (n.level == num - 2) { int i; for (i = 0; n.isUse[i]; i++) ; n.path += string.Format(",{0}", i); int temp = length(n); if (temp < minlength) { minlength = temp; opttour = n.path; } } else { for (int i = 1; i < num; i++) { if (n.isUse[i]) continue; v.level = n.level + 1; v.path = n.path + string.Format(",{0}", i); v.isUse = new bool[num]; for (int j = 0; j < num; j ++) v.isUse[j] = n.isUse[j]; v.isUse[i] = true; v.bound = bound(v); PQ.Add(v); for (int j = PQ.Count - 1; j >= 1; j--) if (PQ[j].bound < PQ[j - 1].bound) { node temp = PQ[j]; PQ[j] = PQ[j - 1]; PQ[j - 1] = temp; } else break; } } for (int i = 0; i < PQ.Count; i++) solve(PQ[i]); } } public int bound(node n) { int intBound = 0; int[] aIntPath = readPath(n.path); int intPathLen = aIntPath.Length; for (int i = 0; i < intPathLen - 1; i++) intBound += W[aIntPath[i], aIntPath[i + 1]]; for (int i = 0; i < num; i++) { if (n.isUse[i] && i != aIntPath[intPathLen - 1]) continue; int min = int.MaxValue; for (int j = 0; j < num; j++) { if (intPathLen > 1 && aIntPath[intPathLen - 1] == i && aIntPath[0] == j) continue; if (n.isUse[j] && j != aIntPath[0]) continue; if (i != j && W[i, j] < min) min = W[i, j]; } intBound += min; } aIntPath = null; return intBound; } public int length(node n) { int intLength = 0; int[] aIntPath = readPath(n.path); int intPathLen = aIntPath.Length; for (int i = 0; i < intPathLen - 1; i++) intLength += W[aIntPath[i], aIntPath[i + 1]]; intLength += W[aIntPath[intPathLen - 1], aIntPath[0]]; return intLength; } int[] readPath(string strPath) { string[] aStrPath = strPath.Split(new char[] { ',' }, StringSplitOptions.RemoveEmptyEntries); int intPathLen = aStrPath.Length; int[] aIntPath = new int[intPathLen]; for (int i = 0; i < intPathLen; i++) aIntPath[i] = Convert.ToInt32(aStrPath[i]); aStrPath = null; return aIntPath; } }回首頁